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Abstract
The one-dimensional Schrödinger equation associated with a time-dependent
Coulomb potential is studied. The invariant operator method (Lewis and
Riesenfeld) and unitary transformation approach are employed to derive
quantum solutions of the system. We obtain an ordinary second-order
differential equation whose analytical exact solution has been unknown. It
is confirmed that the form of this equation is similar to the radial Schrödinger
equation for the hydrogen atom in a (arbitrary) strong magnetic field. The
qualitative properties for the eigenstates spectrum are described separately for
the different values of the parameter ω0 appearing in the x2 term, x being the
position, i.e., ω0 > 0, ω0 < 0 and ω0 = 0. For the ω0 = 0 case, the eigenvalue
equation of invariant operator reduces to a solvable form and, consequently, we
have provided exact eigenstates of the time-dependent Hamiltonian system.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Bz

1. Introduction

The problem of dynamical system described by time-dependent Hamiltonian has drawn special
interest from theoretical physicists for a long time. This has happened due to its apparent
applicability for understanding diverse problems in different areas of physics. For example,
the construction of a time-dependent potential is necessary in studying the collisions of fast
ions with metal surfaces [1], the charged-particle beams in accelerators [2] and the electronic
structure of atoms in a time-dependent field [3].

A great deal of attention has been paid to some specific problems of time-dependent
oscillators, for instance, the time-dependent singular oscillator and the oscillator driven by
arbitrary force. In fact, these specific problems have been studied extensively in different
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directions by many authors who have obtained its explicit closed-form solutions [4–22].
The construction of the invariants (constants of motion) which describe a quantum system
governed by a time-dependent Hamiltonian has attracted much attention in the literature (see
[5] and references therein). Lewis and Riesenfeld [23] have shown that, if the system admits
an invariant I (t), it is possible to find a privileged basis associated with the eigenstates of
this invariant. The complete wavefunctions which evolve according to the time-dependent
Schrödinger equation can be obtained by multiplying a suitable time-dependent phase factor
by the eigenstates of I (t).

In the meantime, the problem of the hydrogen atom still receives considerable interest with
applications in various areas of both theoretical and experimental physics (see, for example,
[24]). For a suitable description of the quantum feature for the hydrogen atom, it is necessary
to take into account the Coulomb interaction which is a long-range interaction that can be
efficiently managed. The investigation of the problem for Coulomb potential has its own
relevance, since one can study bound states, degeneracy issues, singularity of the potential and
the corresponding eigenfunctions.

On the other hand, the Schrödinger equation for the 2D hydrogen atom which has
been considered in [25] under the influence of the strong magnetic field is integrable and
even separable so that the radial equation effectively reduces to a one-dimensional problem.
Nevertheless, it is well known that its radial Schrödinger equation cannot be solved exactly. The
authors of [25] have described the qualitative properties of the energy spectrum and proposed
a semianalytical method in order to numerically calculate the eigenenergies. However, the
representation matrix of the Hamiltonian in the Landau basis is calculated analytically and, of
course, is exactly known.

In this paper, we try to approach the general solutions of the one-dimensional time-
dependent Schrödinger equation for the charged particle moving under the action of central
forces which are associated with the time-dependent Coulomb potential V (x, t) where x is
a distance. For the motion of electrons in the hydrogen atom, the central-force field can be
specified by the Coulomb potential V (x, t) = −Z(t)/x, where Z(t) is a parameter determined
by the charges of the electron and the nucleus and the dielectric constant. Some researchers
have considered a time-dependent dielectric constant [26–30] which is evidently responsible
for the time dependence of the Coulomb potential. The problem of a single particle which has
a time-dependent mass, moving around a center of time-dependent Coulomb force, may also
be a typical example associated with the time-dependent Coulomb potential. Dodonov et al
studied the quantum problem of the time-dependent Coulomb potential on the basis of integral
of motion and, as a result, obtained exact propagators associated with the system [31]. As
far as we know, the time-dependent Coulomb potential can be employed in several dynamical
systems. Soff calculated spin polarization of electrons induced by the strong magnetic field
which is created by collisions of very heavy ions, and subjected to instantaneous Coulomb
potential which explicitly depends on time according to the time dependence of heavy ion
charge density [32]. Staudt and Keitel studied the ionization behavior of helium under the
influence of the strong laser field in the high-frequency regime by introducing the time-
dependent repulsive Coulomb potential described by mean-field ansatz [33]. The effect of
time-dependent screening of a negative charge has been investigated by introducing time-
dependent effective Coulomb potential [34].

The aim of our present work is to investigate the exact wavefunctions of quantum
system associated with the time-dependent Coulomb potential using the Lewis and Riesenfeld
invariant method. The one-dimensional equation obtained for this system is similar to the
radial Schrödinger equation of the hydrogen atom. Our motivation stems from the fact that the
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exact analytical solutions of the time-independent radial Schrödinger equation of the hydrogen
atom, which is an ordinary second-order differential equation, are unknown yet.

This paper is organized as follows. In section 2, we consider a Hamiltonian which
describes a time-dependent Coulomb potential system and construct a corresponding invariant
operator. The eigenfunctions of the invariant operator and exact wavefunctions which satisfy
the Schrödinger equation are investigated in section 3. In section 4, we applied our development
to two special cases in order to promote our understanding of the theory. The concluding
remarks are placed in section 5.

2. Hamiltonian and invariant operator

Let us recall the general method to introduce invariant operators [23] for a system specified by a
time-dependent Hamiltonian H(t) and a corresponding evolution operator U(t). An invariant
I (t) may be constructed by taking advantage of the fact that its time-derivative results in zero:

dI

dt
= ∂I

∂t
+

1

ih̄
[I,H ] = 0. (1)

It possesses a remarkable property that any eigenstate of I (0) evolves into an eigenstate of
I (t). Then, if the set of reference eigenstates {φn(t)} for the operator I (t) is continuous
with respect to t (all eigensates are associated with the same time-independent eigenvalue
εn), the corresponding global phases θn(t) are defined by the relation associated with the
wavefunctions ψn(t):

ψn(t) = U(t)φn(0) = eiθn(t)φn(t). (2)

Of course, ψn(t) follow the Schrödinger equation of the form

ih̄
∂

∂t
ψn(t) = H(t)ψn(t), (3)

and θn(t) satisfies the relation

h̄
d

dt
θn(t) = 〈φn(t)|ih̄ ∂

∂t
− H |φn(t)〉. (4)

Our task, in this section, is to derive the invariant operator of the system governed by the
Hamiltonian:

H(x, p, t) = A(t)p2 + C(t)

(
1

x
p + p

1

x

)
+

E(t)

x2
− Z(t)

x
, (5)

which is defined in the half space x � 0, where A(t), C(t), E(t) and Z(t) are time-dependent
coefficients with Z(t) > 0. E(t) and Z(t) represent the strength of the singular potentials.
The time variation of such strengths was investigated by Dent and Fairbairn [35]. This
Hamiltonian is exactly the one related to the hydrogen atom and the term (1/x) p + p (1/x)

gives the expression containing 1
x

∂
∂x

in coordinate space.
Now, let us find the exact invariant starting from

I (x, p, t) = α(t)x2 + γ (t)p2 + β(t)(xp + px)

+ δ(t)

(
1

x
p + p

1

x

)
+

λ(t)

x2
− η(t)

x
+ ξ(t), (6)

where α(t) − ξ(t) are time-dependent coefficients which should be determined afterward.
Substitution of equations (5) and (6) into the Liouville–von Neumann equation represented

in equation (1) gives the equations for the coefficients:

α̇ = 0, (7)
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β̇ = −2αA, (8)

γ̇ = −4βA, (9)

η̇ = −2βZ, (10)

δ̇ = −4βC, (11)

λ̇ = −4βE, (12)

ξ̇ = −4αC, (13)

γZ = ηA, (14)

δZ = ηC, (15)

γC = δA, (16)

λA = γE, (17)

λC = δE. (18)

The ratios C(t)

A(t)
and E(t)

A(t)
are constants. For convenience, let us call them k1 and k2, respectively.

This fact can be easily inferred from equations (7)–(17). Note that this can also be explained
by making use of the total energy (5) which is a function of canonical variables x and p. If
we define a generalized kinetic momentum as P = 1

2A

(
d
dt

x
)
, it may be possible to eliminate

the canonical momentum p from equation (5) using P = 1
2A

(
d
dt

x
) = p + k1/x which is

similar to the canonical momentum for a radial 2D hydrogen atom. Through this process,
equation (5) becomes just the sum of a kinetic energy and the Coulomb electrostatic potential
energy, namely H(x, p, t) = 1

4A

(
d
dt

x
)2 − Z(t)

x
(note that we have taken as k2 = k2

1).
Now we can solve equations (7)–(18) to give the explicit values of the coefficients in the

invariant operator. Thus we have

α(t) = α0, (19)

β(t) = β0 − 2α0

∫ t

0
A(t ′) dt ′, (20)

γ (t) = γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′)dt ′

]2

, (21)

δ(t) = δ0

γ0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
)

, (22)

η(t) = η0

γ
1
2

0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
) 1

2

, (23)

λ(t) = λ0

γ0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
)

, (24)

ξ(t) = 2δ0

γ0

(
β0 − 2α0

∫ t

0
A(t ′) dt ′

)
, (25)

under the proper choice of some integral constants, δ0 = k1γ0 and λ0 = k2γ0. By inserting
equations (19)–(25) into (6), we obtain the expression for the invariant operator:
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I (x, p, t) = α0x
2 +

(
β0 − 2α0

∫ t

0
A(t ′) dt ′

)
(xp + px)

+

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
)

p2

+
δ0

γ0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
) (

1

x
p + p

1

x

)

− η0

γ
1
2

0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
) 1

2 1

x

+
λ0

γ0

(
γ0 − 4β0

∫ t

0
A(t ′) dt ′ + 4α0

[∫ t

0
A(t ′) dt ′

]2
)

1

x2

+
2δ0

γ0

(
β0 − 2α0

∫ t

0
A(t ′) dt ′

)
. (26)

3. Exact quantum solutions

The key point of our analysis is to perform the time-dependent unitary transformation such
that

�n(x) = U(t)φn(x, t), (27)

where a time-dependent unitary operator U(t) is given by

U(t) = V (t)�(t) = exp

(
iβ(t)

2h̄γ0
x2

)
× exp

(
i

2h̄
ln

(
γ (t)

γ0

) 1
2

(xp + px)

)
. (28)

It can be easily shown that, under this transformation, the coordinate and momentum operators
change according to

x −→ x = U(t)xU(t)−1 =
(

γ (t)

γ0

) 1
2

x, (29)

p −→ p = U(t)pU(t)−1 =
(

γ (t)

γ0

)− 1
2
(

p − β(t)

γ0
x

)
. (30)

Hence, the operator I changes into time-independent operator I0 = UIU−1. In other words,
the invariant operator (26) becomes

I (t) −→ I0 = UIU−1 = γ0p
2 +

(
α0γ0 − β2

0

)
x2 + δ0

(
1

x
p + p

1

x

)
+

λ0

x2
− η0

x
. (31)

Thus, the eigenvalue equation for the transformed invariant operator can be simply represented
in the form(

γ0p
2 +

(
α0γ0 − β2

0

)
x2 + δ0

(
1

x
p + p

1

x

)
+

λ0

x2
− η0

x

)
�n(x) = εn�n(x). (32)

This is the fundamental one-dimensional ordinary second-order differential equation,
analogous to that for the radial wavefunction �n as a function of the dimensionless polar
radius x, which we are going to study.

According to values of ω0 = (
α0γ0−β2

0

)
, i.e. positive, negative or zero, we can distinguish

three cases.
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(i) Case 1: ω0 > 0. In this case, the system becomes the same as the radial Schrödinger
equation of the hydrogen atom in the (arbitrary) strong magnetic field, which is an
ordinary second-order differential equation whose analytical exact solution is unknown.
The problem of this situation has been treated by Robnik and Romanovsky [25]. They
described the qualitative properties of the energy spectrum and employed a semianalytical
method in order to calculate the numerical eigenenergies. To estimate the ground-state
energy and the higher-order excited ones, they also used a number of useful analytical
approximation methods such as the semiclassical approximation, the perturbation method,
the variational method and the Taylor power expansion of the potential around the
minimum.

(ii) Case 2: ω0 < 0. If we introduce a positive notation � such that ω0 = −� 2 = (i�)2,
equation (32) becomes(

γ0p
2 − � 2x2 + δ0

(
1

x
p + p

1

x

)
+

λ0

x2
− η0

x

)
�n(x) = εn�n(x). (33)

It is clear that this equation is similar to the so-called inverted radial Schrödinger
equation of the hydrogen atom in the (arbitrary) strong magnetic field. However, it
cannot be solved exactly. Nevertheless, by applying the unitary transformation with
�π

4
= exp

(
i π

8h̄ (xp + px)
)
, the situation convert to that of the ω0 > 0 case which requires

much analytical work.
(iii) Case 3: ω0 = 0. In this case, the invariant can be written as

I0 = γ0p
2 + δ0

(
1

x
p + p

1

x

)
+

λ0

x2
− η0

x
. (34)

One may see that this is really equivalent to or reduces to that of the situation associated
with a time-independent Hamiltonian. Therefore, the instantaneous eigenstates of the
time-dependent system can be readily transformed to the eigenstates of the Hamiltonian
related to the time-independent system. Then the eigenvalue equation (32) becomes(

∂2

∂x2
+ a

1

x

∂

∂x
+

η0

h̄2γ0x
− b

1

x2
+

εn

h̄2γ0

)
�n(x) = 0, (35)

where a = 2iδ0
h̄γ0

and b = iδ0
h̄γ0

+ λ0

h̄2γ0
.

At this stage, let us suppose that the spectrum of eigenvalues is discrete, i.e., the system
is bound. This requirement can be met by putting εn < 0. To solve equation (35), we express
�n in the form

�n(x) = xreqxχn(x), (36)

where

r = 1

2
− iδ0

h̄γ0
+

√
1

4
− δ2

0

h̄2γ 2
0

+
λ0

h̄2γ0
, (37)

q = 1

h̄γ
1
2

0

√−εn. (38)

By inserting equation (36) into (35) and after some rearrangement, we can obtain the
differential equation

y
∂2χ(y)

∂y2
+ (1 + l − y)

∂χ(y)

∂y
+

1

2

( −η0

h̄2γ0q
− l − 1

)
χ(y) = 0, (39)
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where

y = −2qx, (40)

l =
√

1 − δ2
0

h̄2γ 2
0

+
λ0

h̄2γ0
. (41)

In equation (39), χn(y) satisfies the associated Laguerre polynomial:

χn(y) = Ll
n(y), (42)

where

n = 1

2

⎛
⎝ −η0

h̄γ
1
2

0

√−εn

− l − 1

⎞
⎠ . (43)

Consequently, the constant eigenvalues εn are exactly given as

εn = −η2
0

h̄2γ0(2n + l + 1)2
. (44)

The eigenfunctions of the invariant I0 can, then, be represented in the form

�n(x) =
[
(2n + l + 1)l+3 �(n + l + 1)

�(n + 1)

(
h̄2γ0

2η0

)l+2
]− 1

2

x
l
2 + 1

2 − iδ0
h̄γ0

× exp

( −η0

h̄2γ0(2n + l + 1)
x

)
× Ll

n

(
2η0

h̄2γ0(2n + l + 1)
x

)
. (45)

The complete normalized states for I (t) are thus evaluated to be

φn(x, t) = U−1�n(x) = �−1V −1�n(x)

=
[
(2n + l + 1)l+3 �(n + l + 1)

�(n + 1)

(
h̄2γ (t)

2η(t)

)l+2
]− 1

2

×
(

γ (t)

γ0

) iδ0
2h̄γ0

x
l
2 + 1

2 − iδ0
h̄γ0 exp

(
iβ(t)

2h̄γ (t)
x2

)

× exp

( −η(t)

h̄2γ (t)(2n + l + 1)
x

)
× Ll

n

(
2η(t)

h̄2γ (t)(2n + l + 1)
x

)
. (46)

There still remains the problem of finding the phases θn(t) which satisfy equation (4).
Carrying out the unitary transformation by means of U(t), equation (4) becomes

h̄
d

dt
θn(t) = 〈�n(x)| − A(t)

γ (t)
I0 − δ0γ̇ (t)

2γ0γ (t)
|�n(x)〉. (47)

Then, with the help of equation (44), this equation can be easily evaluated so that we obtain
the phases in the form

θn(t) = η2
0

h̄3γ0(2n + l + 1)2

∫ t

0

A(t ′)
γ (t ′)

dt ′ − i ln

(
γ (t)

γ0

)− iδ0
2h̄γ0

. (48)
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Therefore, by substituting equations (46) and (48) into (2), the exact nth-order solution of the
Schrödinger equation (1) associated with the Hamiltonian H(x, p, t) is

ψn(x, t) =
[
(2n + l + 1)l+3 �(n + l + 1)

�(n + 1)

(
h̄2γ (t)

2η(t)

)l+2
]− 1

2

x
l
2 + 1

2 − iδ0
h̄γ0

× exp

(
iβ(t)

2h̄γ (t)
x2

)
× exp

( −η(t)

h̄2γ (t)(2n + l + 1)
x

)

× exp

(
iη2

0

h̄3γ0(2n + l + 1)2

∫ t

0

A(t ′)
γ (t ′)

dt ′
)

×Ll
n

(
2η(t)

h̄2γ (t)(2n + l + 1)
x

)
. (49)

4. Applications

In this section, we apply our developments to specific cases in order to promote our further
understanding.

4.1. Hydrogenoı̈d atom

Indeed, our study for the quantum solutions of the time-dependent Schrödinger equation
can be applied to the problem of charged particle moving under the action of central forces
associated with the time-dependent Coulomb potential. If we take A(t) = (1/2me) and
Z(t) = (e2/4πε0) our wavefunctions ψn(x, t) become analogous to those of the radial
equation for the hydrogen atom in stationary case [24]. On the other hand, in case that
A(t) = (1/2µ) and Z(t) = (Ze2/4πε0), our problem is equivalent to that of a time-
independent hydrogenoı̈d atom.

4.2. One dimensional time-dependent Coulomb potential

For the simple case where C(t) = 0 and E(t) = 0, the system is equivalent to the one-
dimensional Coulomb potential problem for the positive half region x > 0 . Because of the
singularity at the origin, solutions must be obtained separately for the two regions x > 0 and
x < 0 and then appropriately matched at x = 0. Since A(t)p2 − Z(t)/ |x| is symmetric for
both sides of origin, the solutions for x > 0 can be extended to x < 0 so that we obtain even
and odd wavefunctions. Thus, the corresponding regular solution is given in the form:

ψn(x, t) =
[
(2n + 2)4 �(n + 2)

�(n + 1)

(
h̄2γ (t)

2η(t)

)3
]− 1

2

x exp

(
iβ(t)

2h̄γ (t)
|x2|

)

× exp

( −η(t)

h̄2γ (t)(2n + 2)
|x|

)
exp

(
iη2

0

h̄3γ0(2n + 2)2

∫ t

0

A(t ′)
γ (t ′)

dt ′
)

×L1
n

(
2η(t)

h̄2γ (t)(2n + 2)
|x|

)
. (50)

If we take A = const and Z = const, expression (50) is equivalent to the regular solution of the
stationary Schrödinger equation for a one-dimensional Coulomb potential problem [36–40].
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4.3. Coulomb potential with time-dependent mass

The developments of the present work can also be applied to the problem of Coulomb
potential with time-dependent mass. The Hamiltonian system with time-dependent mass
has wide applications and sometimes plays significant roles in diverse branches of physics.
For instance, Colegarve and Abdalla employed the problem of an harmonic oscillator with
time-dependent mass to study the problem of a Febry–Perot cavity which interacts with a heat
reservoir [41]. Mandal has investigated nonclassical behavior of coherent light coupled to the
oscillator, such as photon-bunching, photon-antibunching and nonclassical photon statistics,
by introducing the quantum-driven oscillator model of time-dependent mass (and frequency)
[42]. In particular, we take an exponentially decaying mass of the form m(t) = m0e−κt

where m0 and κ are real constants. Besides, we choose time-dependent coefficients such as
A(t) = 1/(2m(t)), C(t) = C0eκt , E(t) = E0eκt and Z(t) = km(t) where C0, E0 and k are
real constants. Then, the Hamiltonian in equation (5) can be written in the form

H = − h̄2

2m0 e−κt

∂2

∂x2
− 2iC0h̄eκt 1

x

∂

∂x
+ (E0 + iC0h̄) eκt 1

x2
− e−κt m0k

x
. (51)

In this case, it is possible to integrate
∫ t

0 A(t ′) dt ′, appearing in equations (20)–(25), so as to
lead the corresponding wavefunctions in the form

ψn(x, t) =
[
(2n + l + 1)l+3 �(n + l + 1)

�(n + 1)

(
h̄2�1(t)

2η0

)l+2
]− 1

2

x
l
2 + 1

2 − iδ0
h̄γ0

× exp

(
i�2(t)

2h̄
x2

)
× exp

( −η0

h̄2�1(t)(2n + l + 1)
x

)

× exp

(
iη2

0

2m0h̄
3(2n + l + 1)2

∫ t

0

dt ′

�2
1(t

′)e−κt ′

)

×Ll
n

(
2η0

h̄2�1(t)(2n + l + 1)
x

)
, (52)

where

�1(t) =
[
γ0

(
γ0 − 2β0

m0κ
(eκt − 1) +

α0

m2
0κ

2
(eκt − 1)2

)]1/2

, (53)

�2(t) = γ0

�2
1

(
β0 − α0

m0κ
(eκt − 1)

)
. (54)

For t → 0, equations (53) and (54) reduce to �1(t) = γ0 and �2(t) = β0/γ0 and,
consequently, the result (equation (52)) becomes the same as that of the stationary case.
Although we manage the system only in one spatial dimension, it will be evident that our
techniques can also be employed to higher-dimensional models without radical modification
[43–45].

5. Conclusion

We investigated Schrödinger solutions of a one-dimensional time-dependent Hamiltonian
system involving time-dependent Coulomb potential. To do this we employed the invariant
operator and unitary transformation methods together. The original invariant given in
equation (6) with equations (19)–(25) is explicitly a function of t, though its time derivative

9
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vanishes: dI/dt = 0. However, the invariant, equation (31), which is transformed by U(t),

has a simple form and is no longer a function of t. Due to this fact, the management
of the transformed invariant in order to solve the eigenvalue equation is much better than
treating the original one. We discussed the eigenvalue equation of the transformed invariant
operator separately for the three cases, i.e., ω0 > 0, ω0 < 0 and ω0 = 0. As can be seen from
equation (49), the Schrödinger solutions have been represented in terms of associated Laguerre
function and are the same as that of the eigenstates of the invariant operator except for some
time-dependent phase factors. Since we do not use any approximation or perturbation method,
our results are exact provided that the explicit value of integration

∫ t

0 A(t ′) dt ′ appearing in
equations (20)–(25) is obtained.

Note that, the strength of Coulomb potential is controlled by the coefficient Z(t)

which acts as a coupling parameter. There is an interesting feature associated with the
singular potential such as Coulomb interaction, which is known as the ‘Klauder phenomenon’
[46]. According to this phenomenon, once the perturbation −Z(t)/x is switched on, it is
impossible to turn off it thoroughly due to the occurrence of vestigial effects which make the
interaction continue permanently. By suitable choices of time-dependent coefficients given in
equation (5), our developments can be applied to various types of quantum systems that
are described by a particular time-dependent Hamiltonian involving Coulomb potential. To
promote our understanding, we applied our theory to three special systems namely, the
hydrogenoı̈d atom the one dimensional time-dependent Coulomb potential, and a Coulomb
potential system with time-dependent mass.

Acknowledgments

This paper has been revised during the stay of one of us (M Maamache) in the National
University of Hanoi, Vietnam. Maamache would like to thank the Ambassador of Algeria
in Vietnam (his excellence Naceur Boucherit) for his help and encouragements. The work
of J R Choi was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (KRF-2007-313-C00162) and by the Korea Research Council of
Fundamental Science Technology (KRCF), Grant No. C-RESEARCH-2006-11-NIMS.

References

[1] Acunaa G P and Miraglia J E 2006 Surf. Sci. 600 4961
[2] Bohn C L, Betzel G T and Sideris I V 2006 Nucl. Instrum. Methods A 561 230
[3] Vikas 2005 Chem. Phys. Lett. 413 216
[4] Markov M A 1989 Invariants and the Evolution of Nonstationary Quantum Systems (Commack, NY: Nova

Science publishers)
[5] Um C-I, Yeon K-H and George T F 2002 Phys. Rep. 362 63
[6] Calogero F 1969 J. Math. Phys. 10 2191
[7] Calogero F 1971 J. Math. Phys. 12 419
[8] Maamache M 1995 Phys. Rev. A 52 936
[9] Maamache M 1996 J. Phys. A: Math. Gen. 29 2833

Maamache M 1998 J. Phys. A: Math. Gen. 31 6849
[10] Dodonov V V, Man’ko V I and Rosa L 1998 Phys. Rev. A 57 2851
[11] Trifonov D A 1999 J. Phys. A: Math. Gen. 32 3649
[12] Pedrosa I A, Serra G P and Guedes I 1997 Phys. Rev. A 56 4300
[13] Dodonov V V, Malkin I A and Man’ko V I 1974 Nuovo Cimento B 24 46
[14] Maamache M, Provost J P and Vallée G 1999 Phys. Rev. A 59 1777
[15] Maamache M and Choutri H 2000 J. Phys. A: Math. Gen. 33 6203
[16] Choi J R and Kweon B H 2002 Int. J. Mod. Phys. B 16 4733
[17] Choi J R 2003 Int. J. Theor. Phys. 42 853

10

http://dx.doi.org/10.1016/j.susc.2006.08.016
http://dx.doi.org/10.1016/j.nima.2006.01.034
http://dx.doi.org/10.1016/j.cplett.2005.07.092
http://dx.doi.org/10.1016/S0370-1573(01)00077-1
http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1063/1.1665604
http://dx.doi.org/10.1103/PhysRevA.52.936
http://dx.doi.org/10.1088/0305-4470/29/11/017
http://dx.doi.org/10.1088/0305-4470/31/32/008
http://dx.doi.org/10.1103/PhysRevA.57.2851
http://dx.doi.org/10.1088/0305-4470/32/19/314
http://dx.doi.org/10.1103/PhysRevA.56.4300
http://dx.doi.org/10.1007/BF02724031
http://dx.doi.org/10.1103/PhysRevA.59.1777
http://dx.doi.org/10.1088/0305-4470/33/35/308
http://dx.doi.org/10.1142/S0217979202014723
http://dx.doi.org/10.1023/A:1024423018984


J. Phys. A: Math. Theor. 41 (2008) 215303 S Menouar et al

[18] Song D-Y 2000 Phys. Rev. A 62 14103
[19] Song D-Y 2000 Phys. Rev. Lett. 85 1141
[20] Maamache M and Bekkar H 2003 J. Phys. A: Math. Gen. 36 359
[21] Maamache M, Menouar S and Krache L 2006 Int. J. Theor. Phys. 45 2223
[22] Pedrosa I A and Guedes I 2003 Int. J. Mod. Phys. B 17 2903
[23] Lewis H R Jr and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[24] Schwabl F 2007 Quantum Mechanics (Berlin: Springer)
[25] Robnik M and Romanovski V G 2003 J. Phys. A: Math. Gen. 36 7923
[26] Cirone M, Rz_zewski K and Mostowski J 1997 Phys. Rev. A 55 62
[27] Zhang Y and Gao B-Q 2005 Chin. Phys. Lett. 22 446
[28] Choi J R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 669
[29] Gupta A, Antonsen T M Jr and Milchberg H M 2004 Phys. Rev. E 70 046410
[30] Inani A, Koldyaev V and Graves S 2007 Microelectron. Reliab. 47 1429
[31] Dodonov V V, Man’ko V I and Nikonov D E 1992 Phys. Lett. A 162 359
[32] Soff G 1981 Phys. Rev. A 23 701
[33] Staudt A and Keitel C H 2006 Phys. Rev. A 73 043412
[34] Borisov A G, Sánchez-Portal D, Dı́ez Muiño R and Echenique P M 2004 Chem. Phys. Lett. 393 132
[35] Dent T and Fairbairn M 2003 Nucl. Phys. B 653 256
[36] Loudon R 1959 Am. J. Phys. 27 649
[37] Andrews M 1976 Am. J. Phys. 44 1064
[38] Fisher W, Leshke H and Muller P 1995 J. Math. Phys. 36 2313
[39] Li Q-S and Lu J 2001 J. Chem. Phys. Lett. 336 118
[40] Palma G and Raff U 2006 Can. J. Phys. 84 787
[41] Colegarve R K and Abdalla M S 1981 Opt. Acta 28 495
[42] Mandal S 2004 Phys. Lett. A 321 308
[43] Kalnins E G and Miller W Jr 1987 J. Math. Phys. 28 1005
[44] Efthimiou C J and Spector D 1994 Phys. Rev. A 49 2301
[45] Kaushal R S 1992 Phys. Rev. A 46 2941
[46] Klauder J R 1973 Phys. Lett. B 47 523

11

http://dx.doi.org/10.1103/PhysRevA.62.014103
http://dx.doi.org/10.1103/PhysRevLett.85.1141
http://dx.doi.org/10.1088/0305-4470/36/23/105
http://dx.doi.org/10.1007/s10773-006-9182-4
http://dx.doi.org/10.1142/S0217979203020673
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1088/0305-4470/36/29/304
http://dx.doi.org/10.1103/PhysRevA.55.62
http://dx.doi.org/10.1088/0256-307X/22/2/049
http://dx.doi.org/10.1088/0953-4075/39/3/019
http://dx.doi.org/10.1103/PhysRevE.70.046410
http://dx.doi.org/10.1016/j.microrel.2007.07.053
http://dx.doi.org/10.1016/0375-9601(92)90054-P
http://dx.doi.org/10.1103/PhysRevA.23.701
http://dx.doi.org/10.1103/PhysRevA.73.043412
http://dx.doi.org/10.1016/j.cplett.2004.06.026
http://dx.doi.org/10.1016/S0550-3213(03)00043-9
http://dx.doi.org/10.1119/1.1934950
http://dx.doi.org/10.1119/1.10585
http://dx.doi.org/10.1063/1.531040
http://dx.doi.org/10.1016/S0009-2614(01)00081-1
http://dx.doi.org/10.1139/P06-072
http://dx.doi.org/10.1016/j.physleta.2003.12.052
http://dx.doi.org/10.1063/1.527592
http://dx.doi.org/10.1103/PhysRevA.49.2301
http://dx.doi.org/10.1103/PhysRevA.46.2941
http://dx.doi.org/10.1016/0370-2693(73)90032-4

	1. Introduction
	2. Hamiltonian and invariant operator
	3. Exact quantum solutions
	4. Applications
	4.1. Hydrogenoïd atom
	4.2. One dimensional time-dependant Coulomb potential
	4.3. Coulomb potential with time-dependent mass

	5. Conclusion
	Acknowledgments
	References

